Как происходит умножение частоты. Что значит "умножитель частоты"

Часть 1. Блоки УКВ аппаратов. Статья 7. Блоки задающих генераторов.

Рассмотрение блоков радиопередатчика начинаем с блока задающего генератора, который является «сердцем» этого радиоаппарата.
В статье 5, напечатанной в одном из предыдущих номеров этого журнала, достаточно подробно рассмотрены принципы построения схем различных типов генераторов, но при этом делался упор на то, что эти генераторы должны работать в качестве гетеродинов (именно первых гетеродинов) УКВ радиоприемников. В той же статье также приводились некоторые математические формулы, позволяющие выполнить простейший расчет элементов схемы генератора.

В этой же статье мною будут приводиться только те сведения, которые являются специфическими именно для задающих генераторов, работающих в составе УКВ передатчиков. Очень подробно тема задающих генераторов освещена в книге В. Полякова Л.1. Настоятельно советую прочитать.
По качеству излучаемого в эфир сигнала обычно корреспонденты судят и об умении и о способностях владельца радиостанции. Следует помнить, что качество сигнала во многом определяется задающим генератором передатчика.

Основное требование, предъявляемое к задающему генератору, это высокая стабильность частоты.

Уход частоты за время проведения самой долгой связи не должен превосходить 50...200 Гц, лишь в этом случае корреспондент не будет вынужден подстраивать приемник. Относительная нестабильность частоты при таком уходе должна быть не хуже от 5 x 10^-5 до 3 x 10^-6.

Если первую цифру получить сравнительно несложно, то вторую - можно лишь при тщательном выборе схемы, проектировании удобного расположения элементов и аккуратном изготовлении генератора.
Кроме того, следует учитывать задачи, которые будет выполнять разрабатываемый вами передатчик. Если передатчик разрабатывается только для работы микрофоном с частотной модуляцией, то требования могут быть не очень жесткими. Другое дело, если передатчик предназначается для работы цифровыми видами связи в сети, тогда требования должны быть самыми жесткими.

Другое, не менее важное требование состоит в отсутствии модуляции сигнала генератора шумом, фоном, изменениями напряжения питания и т.д.

Посмотрим, как удовлетворить поставленным требованиям. Любой генератор содержит колебательную систему и активный элемент, служащий для усиления мощности сигнала, снимаемого с колебательной системы. Усиленный сигнал через цепь обратной связи подается снова в колебательную систему, компенсируя ее потери. Они обратно пропорциональны добротности колебательной системы. Наивысшую добротность имеют кварцевые резонаторы, кроме того, параметры кварца мало зависят от температуры. Поэтому кварцевые генераторы могут иметь относительную нестабильность частоты до 10^-7 (10 в минус седьмой степени).

В реальном генераторе колебания происходят не на собственной частоте контура, а на той, где, его фазовый сдвиг противоположен и равен сдвигу фазы в активном элементе и цепях связи. При этом имеющееся частотное отклонение тем меньше, чем круче фазовая характеристика контура, а следовательно, и больше его добротность.

Таким образом, существенного улучшения стабильности частоты можно добиться, применив контур высокой добротности и высокочастотный транзистор, как можно слабее связанный с контуром.

Остается еще собственная нестабильность резонансной частоты контура. Она вызвана изменениями температуры и механическими перемещениями элементов контура относительно друг друга. Изменение индуктивности и емкости при нагреве на 1 °С характеризуются температурными коэффициентами и индуктивности и емкости (МКИ и МКЕ). В правильно спроектированном генераторе температурные изменения индуктивности и емкости должны быть равны и противоположны по знаку - в этом и состоит принцип температурной компенсации.

ТКИ всех катушек, как правило, положителен, что объясняется увеличением их геометрических размеров при нагреве. Наименьший ТКИ у катушек с керамическими каркасами, изготовленных методом вжигания проводящих витков. Небольшой ТКИ и у катушек, намотанных на керамических каркасах с большим натяжением провода. Отрицательный ТКЕ обладают керамические конденсаторы с красным (-700 x 10^-6) и голубым (-50 x 10^-6) цветом окраски.

Обычно в контур включают основной конденсатор с небольшим ТКЕ (серый или голубой) и термокомпенсирующий конденсатор меньшей емкости с большим отрицательным ТКЕ (красный). Подбирая соотношения их емкостей, добиваются примерного постоянства резонансной частоты контура при нагреве. Колебательный контур генератора желательно поместить в закрытую металлическую коробку-экран. В особо важных случаях контур или даже весь задающий генератор помещают в термостат.

Для возбуждения колебаний в контуре надо выполнить два условия: баланс амплитуд и баланс фаз.
Условие баланса амплитуд требует, чтобы энергия, подводимая к контуру от активного элемента, в точности равнялась потерям энергии в самом контуре и цепях связи с другими элементами генератора.

При более слабой обратной связи колебания затухают и генерация прекращается, а при более сильной - амплитуда колебаний растет и активный элемент (обычно транзистор) либо входит в насыщение, либо закрывается напряжением, вырабатываемым цепью стабилизации амплитуды. В обоих случаях усиление уменьшается, восстанавливая баланс амплитуд.

Связь контура с остальными элементами схемы генератора выгодно делать слабой, чтобы возможные нестабильности этих элементов меньше влияли на частоту колебаний. Вносимые цепями связи потери в контур получаются малыми, а его нагруженная добротность - максимально высокой.
Монтаж генератора является исключительно ответственной операцией и его следует выполнять жестким одножильным проводом, соединительные проводники должны быть по возможности короткими.

Умножители частоты
Для работы любительских радиостанций на высокочастотных участках УКВ и СВЧ диапазонов гетеродины приемников и передатчиков становятся многокаскадными. Задающий генератор, который является первым каскадом гетеродина, обычно работает на довольно низкой частоте. Делается это по разным причинам.

На низких частотах проще подобрать необходимый кварцевый резонатор или создать более благоприятные условия для стабилизации частоты в генераторах с параметрической стабилизацией.

На низких частотах легче организовывать управление частотой генератора.

Отсутствие у радиолюбителей высокочастотных кварцевых резонаторов.

Многокаскадный гетеродин состоит из генератора и последующих нескольких каскадов умножения частоты до необходимой рабочей величины. Так, например, если нам необходимо для KB радиоприемника, имеющего любительский диапазон 21 МГц разработать конвертер для приема сигналов в диапазоне 145 МГц, - нужно создать гетеродин с рабочей частотой 123 МГц.

Получить такую рабочую частоту можно несколькими способами, с использованием самых разнообразных кварцевых резонаторов. Одним из вариантов может быть применение КР на частоту 13,66 МГц. В этом случае собственно генератор должен генерировать частоту 13,66 МГц, а следующие два каскада должны выполнить умножение этой частоты в 9 раз, т.е. каждый из каскадов должен умножать частоту на 3, или, как говорят, каждый из этих каскадов должен работать в режиме утроителя частоты. Как правило, умножительные каскады в большее число раз в любительской практике используются редко.

Схемы простых умножителей частоты
Фактически умножитель частоты не является каким-то необычным, специальным каскадом, а представляет собой обычный усилительный каскад высокой частоты. На рис. 7.1 приведены две схемы простых умножителей частоты.

Схема на рис. 7.1 «а» представляет собой обычный каскад УВЧ. Резисторами R1, R2 и R3 устанавливается режим работы транзистора VT1. Контур L1C3 должен быть настроен на частоту нужной гармоники электромагнитных колебаний, поступающих на этот каскад через С1 от каскада предыдущего. Выделенный в контуре L1C3 сигнал нужной частоты подается к следующему каскаду через конденсатор С5. Резистор R4 и конденсатор С2 предотвращают попадание ВЧ энергии в цепи питания (являются блокировочными элементами).

Схема на рис. 7.1 «б» уже имеет значительные отличия от предыдущей схемы. Главное отличие в том, что транзистор VT1 в этой схеме работает в ключевом режиме, т.е. ток через транзистор протекает только во время прохождения через базу транзистора импульса положительного полупериода колебаний, которые поступают через С1. Контур L1C3 является параллельной нагрузкой, настроенной на частоту нужной гармоники. Выделенный в этом контуре сигнал нужной частота подается к следующему каскаду через С4.

Схемы двухтактных удвоителей
Требование о необходимости содержания в сигнале гетеродина минимальных шумов, которые зависят от наличия в сигнале большого числа гармоник, поставило задачу уменьшить число этих гармоник.

Выполнить поставленную задачу удается с помощью специальных двухтранзисторных умножителей, в которых эти два транзистора включены по двухтактной схеме. На рис. 7.2. приведена принципиальная схема двухтактного удвоителя частоты.

Транзисторы на схеме рис. 7.2 включены по так называемой двухтактной схеме. Дело в том, что на базы этих транзисторов поступают противофазные сигналы и в течение одного из полупериодов поступающего сигнала работает транзистор VT1, а в течение второго полупериода работает транзистор VT2. Поскольку эти два транзистора работают на общую для них нагрузку, то в этой нагрузке, за один период частоты поступающего на каскад сигнала, возникают два периода уже новой, удвоенной частоты.

Если поступающий на такой каскад сигнал достаточно сильный, то точно таким же образом на выходе можно выделить и четвертую гармонику поступающего на вход сигнала.
Как вы уже заметили, двухтактный удвоительный каскад выделяет в своей нагрузке только четные гармоники. Все нечетные гармоники подавляются и в последующем сигнале уже не присутствуют.

Сигнал, который должен быть удвоен, выделяется в контуре L1C. Поверх катушки L1 наматывается катушка L2, выполнeнная из двух отдельных проводов. Делается катушка L2 следующим образом. Нужно отмерить и отрезать два одинаковых куска изолированного тонкого провода, длина которых должна быть достаточной для намотки поверх катушки L1 3...5 витков, из которых будет состоять катушка L2. Затем два конца обоих проводов зажимаются и эти два провода свиваются в единый жгут.

После намотки катушки L2 получившимся жгутом и закреплении её витков, начало одного из проводов соединяется с концом другого провода. Таким путем образуется средняя точка катушки L2, которая соединяется с корпусом (заземляется). Оставшиеся конец первого провода и начало провода второго подключаются, через конденсаторы С1 и С2, к базам транзисторов VT1 и VT2.

Таким путем организуется противофазная подача сигналов к базам VT1 и VT2.

На рис. 7.3 приведена принципиальная схема второго варианта двухтактного удвоителя частоты.

Схема этого варианта несколько проще и содержит меньшее количество деталей, но работает так же эффективно. Как вы уже заметили, нагрузка удвоительного каскада, роль которой выполняет контур L3C3, включена в этом варианте последовательно. В таком случае нужно всегда помнить, что выходные емкости транзисторов складывается и отвод для подключения катушки должен располагаться ближе к заземленному по ВЧ концу катушки.
Ток через транзисторы, и вместе с ним, усиление удвоенного сигнала регулируется подбором величины сопротивления R1. Емкость С1 обычно берется в пределах 120...200 пФ.

Умножители нечетных гармоник
Если двухтактную схему умножителя частоты несколько преобразовать, она станет служить умножителем нечетных гармоник и подавлять гармоники четные. На рис. 7.4 приведена схема двухтактного утроителя частоты.

Основное отличие схемы этого умножителя состоит в том, что в цепях коллекторов и одного и другого транзисторов (VT1 и VT2) располагаются по одному контуру (L3 и L4), настроен ному на нужную гармонику. Каждый из этих контуров настраивается своим собственным подстроечным конденсатором (СЗ и С4). В точке повода питания обязательно должен находиться блокировочный конденсатор С5. В остальном это обычный двухтактный умножитель.

На рис. 7.5 показана схема еще одного двухтактного утроителя.

В этой схеме в цепи и одного и другого транзистора располагается один контур L3C3. Питание подается в отвод от средней точки катушки L3 обязательно через ВЧ дроссель Др1.

Умножитель частоты с ФАПЧ
Система фазовой автоподстройки частоты (ФАПЧ) - это весьма важный и полезный узел, выпускаемый в виде отдельной интегральной схемы многими фирмами - изготовителями.
ФАПЧ содержит фазовый детектор, усилитель и генератор, управляемый напряжением (ГУН), и представляет собой сочетание в одном корпусе аналоговой и цифровой техники. ФАПЧ применяется для тонального декодирования, демодуляции AM- и ЧМ-сигналов, умножения частот, частотного синтеза и во многих других случаях.

Уже с давнего времени ФАПЧ перестала быть уделом профессионалов. С появлением на рынке микросхем ФАПЧ радиолюбители все больше начинают использовать эти устройства в своих конструкциях.

Практическое применение ФАПЧ становится среди радиолюбителей - конструкторов модой и в любое радиотехническое изделие пытаются встроить ФАПЧ, хотя в некоторых случаях получается в результате ухудшение характеристик. Дело в том, что ФАПЧ шумит. Одни микросхемы ФАПЧ шумят меньше, другие - больше, но все равно шумят, потому что возможности создания шума заложены в саму основу ФАПЧ.

Попробуем разобраться в основах работы ФАПЧ. На рис. 7.6 показана классическая блок-схема ФАПЧ.

Основные компоненты ФАПЧ: фазовый детектор, НЧ - фильтр, усилитель сигнала и ГУН (Генератор Управляемый Напряжением). При совместной работе эти компоненты создают так называемый «контур регулирования ФАПЧ».

Фазовый детектор - устройство, которое осуществляет сравнение двух входных частот (одна из которых эталонная) и формирует выходной сигнал, пропорциональный их фазовой разности (если, например, частоты различаются, то на выходе появится периодический сигнал на разностной частоте). Если fвx не равна fгун , то на выходе фазового детектора появляется сигнал.

Этот сигнал поступает на НЧ-фильтр, а затем и на усилитель. Отфильтрованный и усиленный сигнал фазовой ошибки будет воздействовать на частоту ГУН, изменяя ее в направлении fвх. При нормальных условиях ГУН быстро производит «захват» частоты fвх, поддерживая постоянный фазовый сдвиг по отношению к входному сигналу.
Если ФАПЧ используется как умножитель частоты, то между выходом ГУН и фазовым детектором включают делитель частоты на величину n, обеспечивая, таким образом, умножение входной эталонной частоты fвх на величину n.

Самым простым фазовым детектором является цифровой детектор, предстaвляющий собой элемент ИСКЛЮЧАЮЩЕЕ ИЛИ, схематическое изображение которого показано на рис. 7.7 «б». На рис. 7.7 «а» схематично показано как образуется сигнал на выходе ФД. На рис. 7.7 «в» показана зависимость выходного напряжения от разности фаз при использовании фильтра низких частот и прямоугольного входного колебания со скважностью 50%.

Фазовый детектор, построенный на элементе ИСКЛЮЧАЮЩЕЕ ИЛИ, всегда генерирует выходное колебание, которое в дальнейшем должно фильтроваться с помощью фильтра контура регулирования. Таким образом, ФАПЧ с фазовым детектором такого типа содержит контурный фильтр, работающий как фильтр нижних частот, сглаживающий логический выходной сигнал. В таком контуре всегда присутствует некоторая остаточная пульсация и, следовательно, периодические фазовые изменения. В тех схемах, где ФАПЧ используется для умножения или синтеза частот, к выходному сигналу добавляются еще и «боковые полосы фазовой модуляции». Фазовые изменения и фазовая модуляция вызывают явление, которое мы называем шумом генератора.

Фильтр НЧ состоит, как правило, из R и С элементов. В зависимости от числа элементов и выполняемых функций, фильтры могут быть первого или второго порядка. Часто используются различные схемы активных НЧ фильтров на транзисторах или операционных усилителях. Положительным свойством таких фильтров является то, что активные фильтры почти не вносят ослабления сигнала.

Усилитель
В качестве усилителя можно использовать операционный усилитель типа К140УД7 или другой. Или транзисторные дифференциальные усилители различной сложности.

Генератор, управляемый напряжением является важным компонентом ФАПЧ. Его частотой можно управлять, используя выходной сигнал фазового детектора. Некоторые ИМС ФАПЧ содержат ГУН (например, 564ГГ1). В принципе, в качестве ГУН годится любой генератор, частотой которого можно управлять посредством варикапа. Зависимость частоты ГУН от управляющего напряжения, используемого в ФАПЧ, может не обладать высокой линейностью, однако в случае большой нелинейности коэффициент усиления в контуре регулирования будет изменяться в соответствии с частотой сигнала и придется обеспечивать больший запас устойчивости.

Особенность проектирования ФАПЧ
Фазовый детектор вырабатывает сигнал ошибки, соответствующий фазовому рассогласованию между входным и опорным сигналами. Частотой ГУН можно управлять, подавая на его вход соответствующее напряжение. Казалось бы, здесь можно поступить так же, как и в любом другом усилителе с обратной связью, вводя контур регулирования с некоторым коэффициентом передачи. Однако имеется одно существенное отличие. В усилителе с обратной связью регулируемая с помощью обратной связи величина совпадает с величиной, измеряемой с целью формирования сигнала ошибки или была по крайней мере ей пропорциональна.

В системах ФАПЧ осуществляется интегрирование. Мы измеряем фазу, а регулируем частоту, но фаза является интегралом от частоты. За счет этого в контуре регулирования появляется фазовый сдвиг 90°.

Такой интегратор, включенный в контур обратной связи, существенным образом влияет на работу схемы - дополнительное запаздывание по фазе на 90° на частотах, где коэффициент усиления равен единице, вызывает самовозбуждение. Простое решение заключается в том, чтобы не включать в контур компоненты, которые дают дополнительное запаздывание по фазе, по крайней мере на тех частотах, где коэффициент усиления близок к единице. Это – один из подходов и он приводит к тому, что называется «контуром первого порядка» .

Блок-схема с контуром первого порядка в этом случае выглядит точно так же, как ранее приведенная блок-схема ФАПЧ (рис. 7.6), но без фильтра нижних частот.
Хотя контуры первого порядка во многих ситуациях очень удобны, они не обладают необходимыми свойствами накопителя энергии, которые позволяют генератору, управляемому напряжением, сглаживать помехи и флуктуации входного сигнала. Более того, контур первого порядка не сохраняет постоянным фазовое соотношение между опорным сигналом и сигналом ГУН, так как выход фазового детектора непосредственно управляет ГУН.

В «контур второго порядка» вводится дополнительная фильтрация на низкой частоте с целью предотвращения неустойчивости. Такой контур обладает свойством накопителя энергии («маховика») и, кроме того, уменьшает «диапазон захвата» и увеличивает время захвата.

Практически во всех системах применяют контуры второго порядка, поскольку в большинстве применений система ФАПЧ должна обеспечивать малые флуктуации базы выходного сигнала, а также обладать некоторыми свойствами памяти или «маховика». Контуры второго порядка могут иметь высокий коэффициент передачи на низких частотах, что обеспечивает повышенную устойчивость (по аналогии с достоинствами высокого коэффициента усиления в усилителях с обратной связью).

Разработка умножителя частоты с ФАПЧ
Формирование частоты, кратной фиксированной входной частоте, является одним из наиболее распространенных применений ФАПЧ. В частотных синтезаторах частота выходного сигнала формируется за счет умножения частоты, стабилизированной кварцевым резонатором, на число n, число n можно задавать в цифровом виде, т.е. можно получить гибкий источник сигналов, которым можно управлять даже с помощью компьютера или простого контроллера.

В данном примере попытаемся использовать ФАПЧ чтобы получить довольно высокую частоту диапазона ДМВ, стабилизированную низкочастотным кварцевым резонатором. Итак, имеем кварцевый резонатор на частоту 6,8 МГц, микросхему КР193ИЕ6 (делитель на 64, работает на частотах до 1000 МГц), а также микросхему КР1564ЛП5, которую будем использовать в качестве фазового детектора.

Начнем со стандартной схемы ФАПЧ, в которой между выходом ГУН и фазовым детектором включен счетчик-делитель на n (рис. 7.8).

На этой схеме для каждого функционального блока указан коэффициент передачи. При расчете контура ФАПЧ эти коэффициенты используются для проведения расчетов по устойчивости. Имеются специальные формулы для расчета каждого из коэффициентов передачи. Общий коэффициент передачи контура ФАПЧ будет равен произведению коэффициентов передачи всех функциональных блоков контура.

По результатам расчета величины общего коэффициента судят об устойчивой работе данной схемы контура. Наибольшие трудности в этих расчетах приходятся на долю расчета элементов НЧ фильтра. Большинству радиолюбителей, не имеющих возможности заняться расчетом устойчивости, приходится подбирать компоненты фильтра до тех пор, пока контур не заработает. Попробуем рассмотреть назначения элементов фильтра. На рис. 7.9 приведена одна из возможных схем фильтра НЧ.

Произведение R1xC0 определяет время сглаживания контура, a R0/R1 - демпфирование, т.е. отсутствие перегрузки в скачкообразном изменении частоты. Подбор величин можно начинать с R0 = 0,2 R1. На рис. 7.9 «б» приведена схема с дополнительным конденсатором С1. Один из возможных вариантов этого фильтра может иметь следующие данные: R1 = 10k, R0 = 10k, С0 = 1000 и С1 = 0,033мк.

Рассмотрим принципиальную схему умножителя частоты с ФАПЧ, в которой имеется кварцевый резонатор на частоту 6,8 МГц, микросхема КР193ИЕ6 (делитель на 64, работает на частотах до 1000 МГц), а также микросхема КР1564ЛП5, которую будем использовать в качестве фазового детектора. На рис. 7.10 приведена одна из возможных принципиальных электри­ческих схем умножителя частоты на 64 с применением ФАПЧ, в которой задействованы перечисленные выше компоненты.

Эта схема не является отработанной и приведена мною чисто в целях иллюстрации возможного варианта умножителя с применением ФАПЧ.
Фазовый детектор выполнен на МС DD1 74НС86 (564ЛП5). На элементе этой микросхемы DD1.1 выполнен генератор с кварцевым резонатором Z1. На элемент DD1.3, который работает в режиме повторителя, поступает сигнал с МС делителя частоты ГУН.

Разностный сигнал выявляется на элементе DD1. 2 и подается на активный НЧ фильтр, выполненный на транзисторах VT1 и VT2. R10 и С6 являются дополнительными элементами НЧ фильтра. На варикап VD1 разностный сигнал поступает через R10. ГУН выполнен на транзисторе VT3, а на VT4 собран буфер - усилитель частоты ГУН. С VT4 сигнал подается через С14 на выход, а через фильтр ВЧ С13Др1С15 на делитель частоты ГУН, выполненный на DD2. С выхода делителя частоты сигнал подается на фазовый детектор через конденсатор С16.

О процессе захвата. Для выполнения процесса «захвата» частоты необходимым условием является достаточное напряжение сигнала рассогласования после НЧ фильтра. Всегда следует помнить, что НЧ фильтр на LC элементах вносит большое ослабление сигнала. Контур первого порядка всегда будет синхронизироваться, поскольку там отсутствует ослабление сигнала рассогласования на низкой частоте. Синхронизация контура второго порядка зависит от типа фазового детектора и полосы пропускания фильтра нижних частот. Кроме того, фазовый детектор по схеме ИСКЛЮЧАЮЩЕЕ ИЛИ имеет ограниченный диапазон захвата, зависящий от постоянной времени фильтра.

Процесс захвата происходит следующим образом: когда сигнал фазового рассогласования приближает частоту ГУН к опорной частоте, его изменения становятся более медленными и наоборот. Сигнал рассогласования поэтому является асимметричным и меняется более медленно в той части цикла, в течение которой fгун ближе подходит к fоп. В результате появляется ненулевая средняя компонента, т.е. постоянная компонента, которая и вводит ФАПЧ в синхронизм. Если графическим путем проанализировать управляющее напряжение ГУН в процессе захвата, то можно получить что-то похожее на сигнал, показанный на рис. 7.11.

Каждый процесс захвата индивидуален и каждый раз он выглядит по-разному.

О полосе захвата и слежения. При использовании фазового детектора по схеме ИСКЛЮЧАЮЩЕЕ ИЛИ полоса захвата ограничена постоянной времени фильтра нижних частот. В этом есть определенный смысл, так как, если различие по частоте велико, сигнал рассогласования будет ослабляться фильтром настолько, что контур никогда не сможет осуществить захват. Очевидно, что увеличение постоянной времени фильтра уменьшает полосу захвата, так как это приводит к пониженному коэффициенту передачи контура.

Умножитель частоты на МС12179
Фирма MOTOROLA изготавливает серийно микросхему ФАПЧ типа МС12179, которая в своем составе уже имеет следующие компоненты, необходимые для создания полноценного контура ФАПЧ, а именно:

Все элементы, необходимые для организации работы внешнего генератора с кварцевой стабилизацией частоты;

Фазовый детектор;

Делитель частоты на 256, что позволяет использовать эту МС как умножитель частоты до частот 2500 МГц;

Предусмотрен вход для частоты ГУН и выход сигнала рассогласования к НЧ фильтру.

Обратите внимание, - фильтра НЧ в составе микросхемы нет, его в каждом отдельном случае следует проектировать в соответствии с индивидуальными требованиями к умножителю.

На рис. 7.12 показан схематически контур ФАПЧ с микросхемой МС12179. Кварц Z1 может выбираться в пределах от 5 до 11 МГц, при этом на выходе умножителя можно получить частоты в диапазоне от 2400 до 2800 МГц. Схемы возможных для применения НЧ фильтров показаны на рис. 7.13.

Как сообщил мне в одном из своих писем Александр Пожарский (RK3DTI), которому я исключительно благодарен за ряд ценной информации, умножитель частоты с ФАПЧ на МС12179 создает шумы во много раз меньшие, чем умножитель по описанной выше схеме с отдельным делителем частоты.

Синтезатор частоты на LM7001
В журнале «Радио» №4 за 2003 бала опубликована статья Алексея Темерева (UR5VUL) «УКВ синтезатор частот». Описанная в этой статье схема синтезатора частоты для диапазона 145МГц выполнена на микросхеме LM7001J, используемой различными фирмами в бытовых радиоприемниках.

Синтезатор предназначен для работы в приемопередающих устройствах ЧМ с промежуточной частотой 10,7 МГц. Он обеспечивает формирование сигнала с частотой 133,3...135,3 МГц в режиме приема и 144...146 МГц в режиме передачи с шагом сетки частот 25 кГц. В нем также предусмотрена возможность сканирования в режиме приема во всем диапазоне рабочих частот.

Синтезатор имеет энергонезависимую память на три пользовательские частоты. В нем также «зашиты» 9 репитерных каналов (R0...R8). В режиме передачи в синтезаторе осуществляется частотная модуляция ВЧ сигнала. Питают синтезатор напряжением 8...15 В. Ток потребления - не более 50 мА. Уровень ВЧ сигнала на его выходе при нагрузке 50 Ом составляет не менее 0,1 В. Эта очень интересная конструкция должна заинтересовать многих радиолюбителей.

Микросхемы LM7001J и LM7001JM предназначены для построения частотных синтезаторов с системой ФАПЧ, применяемых в бытовых радиоприемных устройствах. Обе микросхемы идентичны по схеме и параметрам и отличаются лишь конструкцией корпуса - у LM7001J корпус DIP16 для обычного монтажа, у LM7001JM - MFP20 для поверхностного монтажа (обе микросхемы пластмассовые). Назначение выводов микросхем представлена в табл. 7.1.

Выводы Xout и Xin - выход и вход усилителя сигнала образцовой частоты; к этим выводам подключают кварцевый резонатор. Вывод СЕ - вход сигнала разрешения записывания. CL - вход тактовых импульсов записывания. Data -информационный вход. SC - Syncro Control - выход контрольной частоты 400 кГц. BSout1 -BSout3 - band switching - выходы управления внешними устройствами (выход BSout1, кроме этого, - выход сигнала частоты 8 Гц); с помощью этих сигналов выполняется коммутация диапазонов Amin и Fmin - входы программируемого делителя частоты, иначе говоря, входы сигналов AM и ЧМ. Pd1 и Pd2 - выходы частотно-фазового детектора в режимах FM и AM соответственно.

Функциональная схема прибора изображена на рис. 7.14.

Управляющая последовательность битов, поступающая на приемный сдвиговый регистр, определяет значение шага частотной сетки синтезатора, коэффициент деления программируемого делителя частоты, режим его работы и состояние выходов BSout1...BSout3.

Микросхема может работать с семью стандартными значениями шага частотной сетки - 1, 5, 9, 10, 25, 50 или 100 кГц (при частоте образцового генератора 7200 кГц). Введение управляющей последовательности битов происходит последовательно, начиная с младшего бита коэффициента деления частоты программируемого делителя, который может работать в двух режимах - AM и FM.

Устройства для управления частотой ЗГ
Схема электронной настройки

Перестройка частоты задающего генератора с параметрической стабилизацией частоты обычно выполняется при помощи конденсатора переменной емкости с воздушным диэлектриком. Иногда применяется перестройка частоты изменением индуктивности контурной катушки ЗГ. Очень удобно перестраивать частоту задающих генераторов электронным способом - с помощью варикапа или, что лучше, варикапной матрицы. Одна из самых распространенных схем электронной перестройки показана на рис. 7.15.

В качестве матрицы здесь используются два отдельных варикапа, включенные навстречу друг другу. В итоге схема двух соединенных подобным образом варикапов эквивалентна схеме варикапной матрицы. Благодаря встречному включению варикапов для переменного тока уменьшается зависимость частоты от амплитуды высокочастотного напряжения.

Если используется именно варикапная матрица, то параметры контура для неё несложно рассчитать. Например, у матрицы КВС111Б емкость изменяется от 20 до 40 пФ при изменении смещения от +9 до +2 В. Изменение емкости составляет 20 пФ. Если перекрытие по частоте должно быть, скажем, 6%, то необходимое изменение емкости составит 12 % (вдвое больше, так как индуктивность контура не изменяется). Отсюда находим полную емкость контура С = 20 пФ/0,12 = 167 пФ. Индуктивность контура рассчитывается по общеизвестной формуле Томсона: L = 1/ (2nf)^2C.

Чтобы не ухудшилась стабильность частоты, напряжение смещения варикапов должно быть очень хорошо стабилизировано и отфильтровано. Это очень важно.
Для небольшой перестройки контура вместо варикапов можно использовать обычные кремниевые диоды. Но в этом случае диоды должны подбираться под нужную величину перекрытия по частоте. Дело в том, что не у всех однотипных диодов собственная емкость при изменении запирающего напряжения изменяется на одну и ту же величину.

На рис. 7.16 показана схема электронного сдвига частоты, что очень часто используется при переходе с приема на передачу. Например, при приеме генератор должен выдавать частоту 133,3 МГц, а при передаче - 144 МГц.

Варикап в этом случае подключается через конденсатор небольшой емкости, поскольку требуемый сдвиг частоты невелик. В верхнем положении переключателя S1 (передача) на варикап подается фиксированное напряжение смещения с делителя R3R4. При переходе на прием (нижнее положение) смещение изменяется переменным резистором R5, сдвигая частоту. Пределы перестройки можно подобрать, изменяя емкость конденсатора С5 или соотношение сопротивлений делителя R2...R6.

На рис. 7.17 в качестве иллюстрации к теме об электронной перестройке частоты показана действующая схема генератора с одним из возможных вариантов электронной перестройкой частоты.

Электронная перестройка частоты выполняется переменным резистором R4. В качестве варикапов используются диоды VD2 и VD3 типа Д220. Вместо этих диодов можно использовать также диоды многих других типов.

Модуляторы для микрофонов (динамических и угольных)
Модулятор служит для изменения генерируемой генератором высокочастотных сигналов под действием сигналов с более низкой частотой. В результате на выходе генератора получаются, в данном случае, частотно-модулированные электромагнитные колебания.

На рис. 7.18 приведена схема частотного модулирования задающего генератора. В качестве модулятора используется простой предварительный УНЧ с динамическим микрофоном на входе и варикапом на выходе.

На транзисторах VT1 и VT2 выполнен двухкаскадный УНЧ с микрофоном M1 на входе. С выхода УНЧ усиленный сигнал подается на варикап VD1, емкость которого изменяется под воздействием поступающего на него звукового сигнала, в результате чего изменяется емкостная составляющая контура L1C6. Частота настройки контура меняется со звуковой частотой. Генератор выполнен по трехточечной схеме на транзисторе VT3.

На рис. 7.19 приведена схема модулятора, использующая угольный микрофон. Этот частотный модулятор предназначен для работы с задающим генератором УКВ ЧМ передатчика. Резистором R1 подбирается величина тока через микрофон, а переменным резистором R4 устанавливают величину смещения, обеспечивающую качественный сигнал. Конденсатором переменной емкости СЗ и резистором R4 устанавливается оптимальный режим частотной модуляции.

Модулятор для цифровой связи
Некоторые виды цифровой радиосвязи используют для получения необходимой информации НЧ сигналы. Для этого используется специальный аппарат, называемый «модем». Слово «модем» по своему составу является сложным словом и состоит из двух составляющих - слова «модулятор» и «демодулятор».

Модулятор выполняет функцию модуляции цифровым сигналом частоты задающего генератора, а демодулятор выполняет роль своеобразного детектора принимаемых из эфира цифровых сигналов. О демодуляторе рассказывалось в главе 2.
В этом разделе я расскажу о конструкции модулятора, который применяется в разработанной мною конструкции универсального модема MODEM22, предназначенного для цифровых видов радиосвязи.
Описание конструкции и схемы модема MODEM22 можно найти в моей книге «Компьютер на любительской радиостанции» или в Интернете по адресу http://r3xb.by.ru/ .

Многочисленные тесты модема MODEM22 и его аналогов показали, что этот модем является на сегодняшний день ЛУЧШИМ среди других любительских разработок, превосходит известные мне любительские модемы, выполненные с применением детекторов на микросхемах 564ГГ1 и 155АГ1, по качеству приема сигналов и по простоте настройки во много раз.

Чтобы уяснить роль модулятора в работе радиостанции цифровой связи следует знать, что при работе цифровыми видами связи в состав радиостанции непременно должен входить компьютер. Именно компьютер выдает на передатчик цифровые сигналы я виде очень коротких токовых и бестоковых посылок. В токовых посылках сигнал характеризуется длительностью посылки и величиной напряжения. В бестоковой посылке присутствует только длительность этой посылки при нулевой величине напряжения.

Чтобы эти компьютерные сигналы могли воздействовать на задающий генератор передатчика необходим модулятор.

На рис. 7.20 представлена блок-схема модема, все детали различных узлов модема рассчитаны на его работу со средней частотой около 2000 Гц. Модем работает на звуковых (аудио) частотах и совмещает в себе две основных составных части - передающую часть (модулятор) и приемную часть (демодулятор).

Модулятор, в свою очередь, включает в себя устройство для включения и выключения передатчика и собственно модулятор - устройство для подачи на варикап задающего генератора радиопередатчика с частотной модуляцией (либо на микрофонный вход SSB передатчика) посылок от тонального генератора (U1).

Демодулятор включает е себя полосовой фильтр на операционных усилителях (U2), специальный частотный детектор (U3) и выходной узел (U4). Предполагается изготовление каждого из узлов модема на отдельной плате, что позволит в дальнейшем безболезненно заменять неудачно выполненные узлы.

Подключение модема к компьютеру должно выполняться через стандартный СОМ порт с интерфейсом RS-232-C. Официальное ограничение по длине для соединения экранированным" кабелем по стандарту RS-232-C составляет 15,2 м. На практике это расстояние должно быть как можно короче. Уровни напряжений на линиях разъема для логического нуля следует считать -12...-3 В, для логической единицы +3...+12 В. Промежуток от -3 до +3 В соответствует неопределенному значению. Каждый СОМ порт имеет свой собственный разъем, который может иметь либо 25 контактов (DB25), либо 9 контактов (DB9).

На блок-схеме слева указаны номера контактов разъема СОМ-порта для вариантов применения DB25 и DB9, справа указаны гнезда приемопередатчика (трансивера), к которым подводится или от которых берется сигнал.

С контакта 4 (7) разъема СОМ-порта (здесь и далее первая цифра относится к разъему с 25 контактами, а цифра в скобках - к разъему с 9 контактами) берется сигнал для управления переключением передатчика прием/передача. Назначение этого контакта в системе RS-232- С - запрос для передачи, наименование - RTS (Request to send).
Далее через VD1 и R1 сигнал поступает на транзисторный переключатель, выполненный на транзисторе VT1. К цепи коллектора этого транзистора подключается катушка от реле "прием/передача", установленного на трансивере. При подаче на базу транзистора VT1 положительного напряжения реле срабатывает и включает трансивер на передачу.

Блок U1 представляет собой тональный генератор, который и является в данном случае модулятором. Сигналы для манипуляции тонального генератора берутся с контакта 20 (4) разъема. Назначение этого контакта - готовность выходных данных - DTR (Data Terminal Ready).
С контакта 20 (4) сигнал через диод VD2 и резистор R7 поступает на базу транзисторного ключа на VT2, к коллектору которого подключается вход электрической цепочки, через которую выпол­няется манипулирование частотой тонального генератора У1.

Далее сигналы манипулируемого тонального генератора подаются на варикап задающего генератора радиопередатчика с частотной модуляцией, либо на микрофонный вход передатчика, работающего в режиме SSB. Генератор при включенном терминале генерирует тон высокой частоты.
Тональный генератор U1, который является модулятором в данной конструкции модема, выполнен по одному из широко известных вариантов. Принципиальная схема тонального генератора представлена на рис. 7.21.

Генератор выполнен на транзисторах VT1 и VT2 типа КТ315Б по схеме с обратной связью через двойной Т-мост, обладает высокой стабильностью и достаточно хорошим качеством сигнала при питании от стабилизированного источника. Конденсаторы CI, С2 и СЗ должны иметь допуск не хуже 10 процентов. На операционном усилителе DA1 типа К140УД6 выполнен полосовой фильтр, улучшающий синусоидальность выходного сигнала.

Для настройки частотомер подключается к точке выхода, регулировкой R10 устанавливается величина нижней частоты, а регулировкой R9 (при замкнутой на землю точки входа "управление") устанавливается величина верхней частоты. Изменением величины резистора R7 можно корректировать качество синусоиды генерируемого сигнала (только при осциллографическом контроле). Резистором R18 добиваются равной амплитуды для сигналов высокой и низкой частоты.

Настройка модулятора
Настройка модулятора чрезвычайно простая. Привожу необходимые этапы настройки.

Начинать настройку модема следует с выбора величин рабочих частот. При расчетах следует за основу взять характеристики узкополосого НЧ фильтра, установленного на вашем радиоприемнике. Предположим, что радиоприемник имеет узкополосый фильтр с шириной полосы 3000 Гц и пропускает частоты от 1000 до 3000 Гц. В этом случае величина средней частоты будет равна 2000 Гц. Учитывая величину сдвига частот, равную 1000 Гц, определяем, что нижняя частота должна быть 1500 Гц, а верхняя - 2500 Гц.

Настройка тонального генератора (см. рис. 7.21) выполняется с использованием частотомера. Частотомер подключается к точке выхода генерируемого звукового сигнала. Регулировкой величины сопротивления резистора R10 устанавливается величина нижней частоты (1500 Гц), а регулировкой R9 (при замкнутой на землю точке входа "управ­ление") устанавливается величина верхней частоты (2500 Гц).

Изменением величины резистора R7 можно корректировать качество синусоиды генерируемого сигнала (только при осциллографическом контроле). Резистором R18 добиваются равной амплитуды для сигналов высокой и низкой частоты. Помните, что для RTTY используется разнос частот равный величине 170 Гц, a AMTOR, PACTOR и Packet Radio (300 Бод) работают при разносе частот на величину 200 Гц, Packet Radio (1200 Бод) использует разнос частот 1000 Гц.

Модулятор на МС с ФАПЧ. Схема модема
Модулятор, выполненный на микросхеме типа 561ГГ1 с ФАПЧ, входит в состав модема, блок-схема которого пред­ставлена на рис. 7.22. Все детали различных узлов модема рассчитаны на его работу в режиме Packet Radio со скоростью 300 Бод и со средней звуковой частотой примерно 1000 Гц. Модем работает на звуковых (аудио) частотах и совмещает в себе две основных составных части - передающую часть (модулятор) и приемную часть (демодулятор).

Модулятор включает в себя устройство для включения и выключения передатчика и собственно модулятор - устройство для подачи на вход передатчика посылок от тонального генератора. Собственно генератор обозначен как U1, выходной каскад генератора - U1.1. Демодулятор включает в себя полосовой фильтр на операционных усилителях (U2), специальный частотный детектор (U3) и выходной узел (U4). Схемы, относящиеся к демодулятору, не имеют отношения к нашей теме и рассматриваться не будут.

Тональный генератор
Тональный генератор U1 представлен на рис. 7.23.

Собственно генератор звуковых частот выполнен на микросхеме с ФАПЧ 561ГГ1 (564ГГ1). Резисторами R1 и R2 устанавливаются величины необходимых частот. На микросхеме 561ИР2 выполнен узел, который выполняет функцию формирователя синусоиды. Для целей формирования синусоиды служат резисторы R4, R5, R6, R7.
Для улучшения частотных характеристик генерируемого сигнала к генератору добавлен каскад U1.1 на транзисторе КТ315, который служит фильтром нижних частот и позволяет регулировать величину амплитуды выходного сигнала. Схема этого каскада представлена на рис. 7.24.

Настройка модулятора
Изготовленный модулятор следует тщательно настроить. Настройка выполняется в несколько этапов.

Начать настройку модулятора следует с выбора величин рабочих частот. За основу при расчетах можно взять характеристики узкополосого (телеграфного) фильтра. Работать предполагается всеми видами цифровой связи. Предположим, что радиоприемник на вашей станции имеет узкополосый фильтр с шириной полосы 300 Гц и пропускает частоты от 1000 до 1300 Гц. В этом случае величина средней частоты будет равна 1150 Гц. Учитывая величину сдвига частот, равную 200 Гц, определяем, что нижняя частота должна быть 1050 Гц, а верхняя - 1250 Гц. Для варианта спутниковой связи нижняя частота должна быть примерно 1500 Гц, а верхняя - 2500 Гц, при разносе частот 1000 Гц.

Далее проводим настройку тонального генератора (см. рис. 7.23). Для настройки частотомер подключается к точке выхода, регулировкой R1 устанавливается величина нижней частоты (например, 1050 Гц), а регулировкой R2 (при замкнутой на землю точке "вход") устанавливается величина верхней частоты (например, 1250 Гц). Величина амплитуды выходного сигнала должна измеряться вольтметром, подключенным к выходу тонального генератора.

На этом настройка собственно модулятора закончена.

Применяемые варикапы
В большинстве схем этой главы используются варикапы. Конструктивное исполнение варикапа может быть: металлический, металлостеклянный или пластмассовый герметичный корпус со стеклянными изоляторами и гибкими или жесткими выводами и болтом для крепления. Варикапы КВ102А - КВ102Д и КВ104А - КВ104Е имеют бескорпусную конструкцию. Варикапы КВ109А - КВ109Г и варикапные матрицы КВС111А и КВС111Б изготовляют в пластмассовом корпусе.

Пайка и изгибание выводов разрешается не ближе 5 мм от корпуса. Запрещается нарушать заделку выводов бескорпусных диодов. Для повышения надежности рекомендуется выбирать нагрузки, не превышающие 0,7-0,8 предельных. Рабочее положение - любое. Основное назначение - работа в качестве перестраиваемой емкости.

Варикапы КВ102А - КВ102Д имеют положительный вывод, маркируемый оранжевой точкой. Варикапные матрицы КВС111А и КВС111Б имеют положительный вывод, маркируемый цветными точками: КВС111А белой, КВС111Б оранжевой. Изгибание выводов разрешается не ближе 1,5мм от корпуса с радиусом изгиба не менее 1.5 мм.
Варикапные матрицы предназначены для использования в качестве подстроечных конденсаторов в УКВ блоках приемников и селекторах каналов телевизоров.

Параметры варикапов приведены в табл. 7.2.

Литература:
1. В. Поляков «Трансиверы прямого преобразования», Москва, ДОСААФ, 1984г.

Умножение частоты заключается в получении на выходе устройства колебания, частота которого в целое число раз больше частоты входного сигнала. На вход умножителя частоты обычно подается синусоидальное напряжение на выходе получают колебание с частотой Поскольку в умножителе частоты создается спектральная компонента, отсутствующая во входном сигнале, в нем должны быть применены элементы, в которых возможно образование новых спектральных составляющих (нелинейные, параметрические); построить умножитель частоты на основе линейных элементов невозможно. В настоящем параграфе рассматриваются умножители частоты на управляемых нелинейных элементах.

На рис. 3.13 изображена принципиальная схема транзисторного умножителя частоты. При входном сигнале протекающий в выходной цепи ток оказывается несинусоидальным,

содержащим компоненту частоты и гармоники. Ставя в эту цепь достаточно добротный контур, настроенный на частоту гармоники, получим на нем почти синусоидальное напряжение частоты Обычно на вход умножителя частоты подают колебания большой амплитуды, что позволяет использовать в расчетах кусочнолинейную аппроксимацию и метод угла отсечки. Для получения большей амплитуды выходного напряжения выбирают оптимальный угол отсечки. С увеличением коэффициента умножения величина бопт уменьшается, также уменьшаются наибольшие значения коэффициентов гармоник и амплитуды полезных гармоник По этой причине подобные умножители используются лишь для умножения в 2-3 раза.

Для умножения частоты в большое число раз используется иной подход: с помощью нелинейного устройства входной гармонический сигнал периода преобразуется в последовательность коротких видеоимпульсов прямоугольной формы длительностью той же частоты с последующим выделением гармоники с помощью фильтра. Спектры прямоугольных импульсов для двух значений приведены на рис. 3.14. Чем меньше тем меньше амплитуды первых гармоник и тем медленнее убывают их величины с ростом

Используя импульсы с малыми удается осуществлять умножение частоты в десятки раз. На рис. 3.15 приведена схема такого умножителя частоты, основанного на использовании трансформатора с почти прямоугольной характеристикой намагничивания сердечника (рис. 3.16а). Процесс образования коротких импульсов ЭДС во вторичной обмотке трансформатора, пропорциональных в результате протекания тока через первичную обмотку поясняют рис. 3.16 б-г. Ток во вторичной обмотке трансформатора подобен (рис. 3.16г). Контур обеспечивает выделение нужной гармоники. Для получения однополярных импульсов 12 достаточно дополнить внешнюю цепь диодом (пунктир на рис. 3.15). Недостатками Данного способа умножения частоты являются, во-первых, малый

Более эффективными, но и более сложными умножителями частоты большой кратности являются радиоимпульсные умножители частоты, в которых полезная гармоника выделяется фильтром из последовательности радиоимпульсов, получающихся в результате осуществления амплитудной манипуляции несущего колебания частоты видеоимпульсами частоты входного сигнала (рис. 3.17а). В общем случае, когда частота не кратна частоте начальные фазы колебаний внутри каждого импульса оказываются разными; поэтому получающееся колебание не является периодическим. Однако, если обеспечить постоянство начальных фаз колебаний частоты внутри каждого импульса, процесс окажется периодическим с частотой В таком режиме и работают радиоимпульсные умножители частоты.

Спектр колебания отличается от спектра огибающей сдвигом последнего на частоту на этой частоте огибающая спектра прямоугольных радиоимпульсов максимальна (см. рис. 1.16 г и д). При радиоимпульсном умножении частоты изменение смещает огибающую спектра, но не влияет на частоты спектральных компонентов, остающихся кратными частоте Следовательно, для того чтобы полезная гармоника была наибольшей,

нужно выбирать При данном способе умножения частоты удается получать большие до 50-100.

1. Введение

2. Обзор методов решения аналогичных задач

3. Выбор обоснования и предварительный расчёт структурной схемы

4. Описание принципа работы структурной схемы

5. Описание схемы электрической и электрический расчёт

6. Расчёт на ЭВМ

7. Заключение

8. Список литературы

9. Перечень элементов к электрической схеме

1. Введение

Умножители частоты, или как их называют в более развернутом виде, системы формирования дискретного множества частот, в настоящее время получили очень широкое распространение в самых разнообразных видах радиоэлектронной аппаратуры.

Индукционные печи с токами высокой частоты, радиосвязные, радионавигационные и радиолокационные системы, схемы подавления помех, системы управления скоростью двигателя – вот далеко не полный перечень областей применения умножителей частоты.

Появление первых разработок умножителей частоты относится к 30-м и 40-м годам XX века.

В электротехнике и электронике умножителем частоты называется радиоэлектронное устройство, предназначенное для увеличения в целое число раз N частоты подводимых к нему периодических электрических колебаний в заданном диапазоне частот с требуемой стабильностью и качеством выходного сигнала.

Основной параметр – коэффициент умножения частоты N , определяемый как отношение частоты выходного сигнала к частоте входного:

Характерной особенностью умножителей частоты является постоянство N при изменении (в некоторой конечной области) частоты входного сигнала, а также параметров самого умножителя (например, резонансных частот колебательных контуров или резонаторов, входящих в состав умножителя частоты), т.е. в умножителе частоты относительная нестабильность частоты колебаний при умножении остается постоянной. Это важное свойство позволяет использовать умножители частоты для повышения частоты стабильных колебаний в различных радиопередающих, радиолокационных, измерительных и других установках; при этом N может достигать 10 и более.

Основная проблема при конструировании умножителей частоты – это уменьшение фазовой нестабильности входных колебаний (обусловленной случайным характером изменения их фазы), которая приводит к увеличению относительной нестабильности частоты на выходе по сравнению с соответствующей величиной на входе.

Наиболее распространены умножители частоты, состоящие из нелинейного устройства (например, транзистора, варикапа, катушки с ферритовым сердечником) и одного или нескольких электрических фильтров. Нелинейное устройство изменяет форму входных колебаний, вследствие чего в спектре колебаний на его выходе появляются составляющие с частотами, кратными входной частоте. Эти сложные колебания поступают на вход фильтра, который выделяет составляющую с заданной частотой , подавляя (не пропуская) остальные. Такие устройства применяются для умножения частоты гармонических колебаний.

Находят применение также умножители частоты, действие которых основано на синхронизации колебаний автогенератора. В таких приборах возбуждаются колебания с частотой , которая становится в точности равной под действием поступающих на вход колебаний с частотой . Недостатком этих умножителей частоты является сравнительно узкая полоса значений , при которых возможна синхронизация.

Также, в отличие от обычных умножителей частоты умножители на фазовращателях могут обеспечить спектрально чистый, не требующий фильтрации выходной сигнал. Используя для расщепления фазы широкополосные фазово-разностные цепи, можно реализовать частотно-независимые умножители, работающие в диапазоне, который перекрывает множество октав.

В настоящее время выявились следующие основные методы построения умножителей частоты:

косвенный на базе систем импульсно-фазовой автоподстройки частоты (ИФАПЧ);

прямой с использованием фильтрующих элементов на поверхностно-акустических волнах;

цифровой на основе вычислительных процедур.

Необходимо отметить, что умножители частоты с ИФАПЧ относятся к числу чрезвычайно динамичных, развивающихся систем формирования дискретного множества частот. Решающую роль при этом играют такие важнейшие преимущества умножителей частоты и ИФАПЧ, как возможность реализации высококачественных спектральных и приемлемых динамических характеристик при хороших габаритных, энергетических и других показателях.

2. Обзор методов решения аналогичных задач

Рассмотрим некоторые схемы и методы построения умножителей частоты. Процесс умножения частоты на нелинейном элементе сводится к следующему: входной сигнал воздействует на нелинейный элемент или на нелинейный резонатор, в результате чего синусоидальное колебание превращается в периодическое несинусоидальное, которому соответствует бесконечный ряд синусоидальных составляющих. Затем резонатор выделяет ту составляющую, на которую он настроен, в результате чего на выходе выделенная гармоника преобладает над всеми остальными.

Величины побочных гармоник определяется добротностью резонатора, и для того, чтобы их уменьшить, необходимо увеличивать добротность резонаторов. Однако величина добротности резонаторов особенно на длинных и коротких волнах ограничена, и в этом случае для ослабления побочных гармоник применяют специальные фильтры или различные буферные каскады.

Основным показателем умножителя частоты на пассивном нелинейном элементе является коэффициент полезного действия η, под которым понимается отношение мощности N-ой гармоники в нагрузке к мощности, потребляемой от возбудителя:

Столь малые значения к.п.д. обусловлены тем, что из-за выпрямительных свойств нелинейного активного сопротивления большая часть мощности возбудителя преобразуется в мощность постоянного тока и выделяется в цепи смещения.

Если для цепей умножения частоты применять нелинейное реактивное сопротивление, то из-за отсутствия в таком нелинейном элементе потерь мощности при идеальной фильтрации во входной и выходной цепях к.п.д. умножителя будет равен.

В качестве нелинейного реактивного сопротивления в умножителях частоты обычно используют нелинейную ёмкость p -n перехода.

Рисунок 2.1 . Структурная схема умножителя частоты на нелинейном элементе. 1 – фильтр, настроенный на гармонику, близкую к первой; n – фильтр, настроенный на n-ую гармонику.

Принцип работы умножителей на фазовращателях показан на рис.2.2. Частота синусоидального сигнала умножается на N путем разделения входного напряжения на N различных фаз, равноудаленных друг от друга в диапазоне 360°. N сигналов с различными фазами управляют N транзисторами, работающими в режиме класса С, выходные сигналы которых объединяются для формирования импульса через каждые 360°/N градусов. Благодаря использованию N транзисторов мощность входного сигнала может быть в N раз выше мощности, необходимой для насыщения транзистора.

Рисунок 2.2 . Структурная схема умножителя частоты на фазовращателях.

Схема простого умножителя частоты с переменным коэффициентом умножения и жесткой синхронизацией выходных сигналов по отношению к входным приведена на рис. 2.3. Он состоит из генератора импульсов на трех инверторах DD1.1-DD1.3 и синхронизирующего каскада на транзисторе VT1.

Когда входные синхроимпульсы отсутствуют, мультивибратор на DD1.1-DD1.3 работает в обычном режиме. Если в генераторе использована микросхема с двумя защитными диодами на входе, длительность перезарядки конденсатора C1 для любой полярности одинакова и период импульсов составит 1,4 R3 C1, а частота f - 0,7/(R3 C1).

При поступлении на вход VT1 положительных импульсов частоты F вх (рис. 2.3) транзистор в моменты t 1 ,t 3 открывается, что приводит к срыву процесса периодической перезарядки. После закрывания его с момента t 2 , t 4 процесс генерации возобновляется.Генератор формирует импульсы, синхронные по отношению к входным с частотой

F вых = kF вх, (2.3)

Рисунок 2.3 . Принципиальная схема умножителя частоты с жёсткой синхронизацией.

где k - переменный коэффициент умножения,определяемый элементами R3, C1, а F вх - частота входных импульсов.

В качестве элементов DD1 можно использовать любые инверторы микросхем серий К176, К561, КР1561. Кроме того, элементы DD1.1, DD1.2 могут быть без инверсии (буферы) или с гистерезисом (триггеры Шмитта).Транзистор серии КТ315 допустимо заменить другим аналогичным.

Это устройство при подаче на вход импульсов строчной частоты телевизионной развертки позволяет выделять строго определенные участки строки растра для формирования или считывания информации.

Так же умножитель частоты можно спроектировать на резонансном усилительном каскаде. Резонансным называется усилитель, нагрузкой которого служит резонансный контур, настроенный на частоту усиливае­мого сигнала. Для настройки в контуре используется переменное реактивное сопротивление. Резонансные усилители являются из­бирательными высокочастотными усилителями. В радиотехнике они предназначаются для выделения из действующих на входе сигналов с разными частотами лишь группы сигналов с близкими частотами, которые несут нужную информацию. К резонансным усилителям предъявляются требования возможно большего уси­ления, высокой избирательности и стабильности, малого уровня шумов, удобства управления и др.

В резонансных усилителях транзистор можно включить с ОЭ, ОБ и ОК. В большинстве случаев используется схема с оэ, обес­печивающая максимальное усиление по мощности с малым уров­нем шумов. В ряде случаев на достаточно высоких для выбранного транзистора частотах используется схема с ОБ. Колебательный контур в усилитель можно включить по автотрансформаторной, двойной автотрансформаторной, трансформаторной и емкостной схемам.

Рисунок 2.4 . Принципиальная схема умножителя частоты на резонансном усилительном каскаде.

3. Выбор обоснования и предварительный расчёт структурной схемы

Задача обеспечения стабильной работы транзисторного умножителя, как правило, решается более сложно, чем для усилителя, поскольку состав высших гармоник в импульсе тока изменяется более существенно, чем амплитуда первой гармоники. Высокая стабильность возможна в схемах, в которых используется отрицательная обратная связь. Создание источника с большим внутренним сопротивлением в умножителях затруднено, так как для фильтрации побочных гармонических составляющих в них обычно используются параллельные колебательные контуры высокой добротности. Такой контур для высших гармонических составляющих входного тока имеет практически нулевое сопротивление и поэтому может рассматриваться как источник гармонического сигнала с нулевым внутренним сопротивлением, что соответствует заданию моего курсового проекта.

Гармоническая форма напряжения может быть в принципе заметно искажена из-за шунтирующего действия нелинейного входа транзистора. Однако при малых мощностях, при которых обычно работает умножитель, входные сопротивления транзистора достаточно велики, чтобы этот эффект не проявлялся.

Структурная схема умножителя частоты представлена на рисунке 3.1

Рисунок 3.1 – структурная схема умножителя частоты

Слабый входной сигнал усиливается с помощью каскадов предварительного усиления. Их число зависит от уровней как входного сигнала, так и сигнала, который требуется получить на выходе многокаскадного усилителя.

Усиленный предварительными каскадами сигнал подаётся на резонансный каскад, который, работая в режиме сильных сигналов, усиливает и фильтрует третью гармонику гармонического сигнала, подаваемого на вход. Тем самым происходит умножение входной синусойды с коэффициентом умножения N = 3. Выходной каскад предназначен для усиления преобразованного сигнала и передачи его с заданной мощностью на нагрузку. Для лучшей фильтрации побочных составляющих спектра выходного можно подключить резонансный LC-фильтр перед нагрузкой.

Определим максимальный ток протекающий через нагрузку:

(3.1)

Исходя из данных:

(3.2)

Тогда ориентировочное количество каскадов предварительного усиления по следующей формуле:

(3.3)

Для нашего проекта достаточно буде двух каскадов усиления – предварительного и резонансного. Ориентировочный коэффициент усиления для каждого каскада :

Для расчёта резонансного и предварительного усилительного каскада выберем транзистор ГТ309, который удовлетворяет предъявленным требованиям по частоте и выходной мощности. Параметры транзистора:

– предельная частота

Коэффициент усиления по току

Ом – сопротивление базы

- ток насыщения

Импульс тока каоллектора

Мощность рассеяния

4. Описание принципа работы структурной схемы

Т.к. по условию поставленной задачи генератор входного сигнала отсутствует, а на вход усилителя непосредственно подаётся синусойда заданной частоты и амплитуды, то входное устройство может отсутствовать в разрабатываемой структурной схеме.

Схемная реализация каскада предварительного усиления представлена на рисунке 4.1. Это схема усилителя на биполярном транзисторе включенном по схеме с общим эмиттером. Я выбрал эту схему так как у нее сравнительно большие коэффициенты усиления по напряжению и по току, а также большое входное сопротивление. Недостаток этой схемы – сдвиг фаз между входным и выходным сигналом равен 180° но в поставленной задаче не указывается обязательное сохранение фазы на выходе, так что этим недостатком можно пренебречь.

Основными элементами схемы являются источник питания, управляемый элемент - транзистор и резистор . Эти элементы образуют главную цепь усилительного каскада, в которой за счет протекания управляемого по цепи базы коллекторного тока создается усиленное переменное напряжение на выходе схемы. Остальные элементы каскада выполняют вспомогательную роль. Конденсаторы , являются разделительными.

Конденсатор исключает шунтирование входной цепи каскада цепью источника входного сигнала по постоянному току, что позволяет, во-первых, исключить протекание постоянного тока через источник входного сигнала по цепи → → и, во-вторых, обеспечить независимость от внутреннего сопротивления этого источника напряжения на базе в режиме покоя. Функция конденсатора сводится к пропусканию в цепь нагрузки переменной составляющей напряжения и задержанию постоянной составляющей.

Рисунок 4.1 – принципиальная схема усилительного каскада с общим эммитером

Резисторы и используются для задания режима покоя каскада. Поскольку биполярный транзистор управляется током, ток покоя управляемого элемента (в данном случае ток) создается заданием соответствующей величины тока базы покоя. Резистор предназначен для создания цепи протекания тока. Совместно с резистор обеспечивает исходное напряжение на базе относительно зажима ”+” источника питания.

Резистор является элементом отрицательной обратной связи, предназначенным для стабилизации режима покоя каскада при изменении температуры. Температурная зависимость параметров режима покоя обусловливается зависимостью коллекторного тока покоя от температуры. Основными причинами такой зависимости являются изменения от температуры начального тока коллектора , напряжения и коэффициента β. Температурная нестабильность указанных параметров приводит к прямой зависимости тока от температуры. При отсутствии мер по стабилизации тока, его температурные изменения вызывают изменение режима покоя каскада, что может привести, как будет показано далее, к режиму работы каскада в нелинейной области характеристик транзистора и искажению формы кривой выходного сигнала. Вероятность появления искажений повышается с увеличением амплитуды выходного сигнала.

Проявление отрицательной обратной связи и ее стабилизирующего действия на ток нетрудно показать непосредственно на схеме рис. 2. Предположим, что под влиянием температуры ток увеличился. Это отражается на увеличении тока, повышении напряжения и соответственно снижении напряжения. Ток базы уменьшается, вызывая уменьшение тока, чем создается препятствие наметившемуся увеличению тока. Иными словами, стабилизирующее действие отрицательной обратной связи, создаваемой резистором , проявляется в том, что температурные изменения параметров режима покоя передаются цепью обратной связи в противофазе на вход каскада, препятствуя тем самым изменению тока, а, следовательно, и напряжения.

Конденсатор шунтирует резистор по переменному току, исключая тем самым проявление отрицательной обратной связи в каскаде по переменным составляющим. Отсутствие конденсатора привело бы к уменьшению коэффициентов усиления схемы.

Название схемы «с общим эмиттером» означает, что вывод эмиттера транзистора по переменному току является общим для входной и выходной цепи каскада.

Резонансным называется усилитель, нагрузкой которого служит резонансный контур, настроенный на частоту усиливаемого сигнала. Для настройки в контуре используется переменное реактивное сопротивление. Резонансные усилители являются избирательными высокочастотными усилителями. В радиотехнике они предназначаются для выделения из действующих на входе сигналов с разными частотами лишь группы сигналов с близкими частотами, которые несут нужную информацию. К резонансным усилителям предъявляются требования возможно большего усиления, высокой избирательности и стабильности, малого уровня шумов, удобства управления и др.

В резонансных усилителях транзистор можно включить с ОЭ, ОБ и ОК. В нашем случае используется схема с ОЭ, обеспечивающая максимальное усиление по мощности с малым уровнем шумов. Колебательный контур в усилитель можно включить по автотрансформаторной, двойной автотрансформаторной, трансформаторной и емкостной схемам. Неполное включение контура в коллекторную цепь и к нагрузке позволяет избежать чрезмерного ухудшения добротности контура (особенно когда нагрузкой служит малое входное сопротивление транзистора).

Рисунок 4.2 – принципиальная схема резонансного усилительного каскада

5. Описание схемы электрической и электрический расчёт

Прежде всего рассчитаем резонансный каскад.

Исходные данные:

Коэффициент умножения

Чтобы обеспечить запас стабильности на погрешность расчёта, зададимся нестабильностью тока 3-й гармоники 𝛿I = 10% . Из графика рис. 5.1 при выбранном управляющем напряжении такая стабильность обеспечивается при

0,4 ≤ cosλ ≤ 0,6 (5.2)

Где λ – угол закрывания

Рисунок 5.1 – График зависимости отношения гармоник, нестабильности тока и коэффициента Берга от угла закрывания для утроителя частоты

Учтём предельно допустимые параметры транзистора:

Где - напряжённость коллектора

Величина напряжения источника питания

Из графика рис. 5.1:

> 0,4 (5.10)

Тогда окончательно зададим угол закрывания:

Рассчитаем сопротивление обратной связи:

Из рис. 5.3 для низкочастотного приближения (выберем ωτ=1, т.к. в рабочих режимах постоянная составляющая мало зависит от частоты и и при выбранном значении ωτ=1 ошибка не превышает 10%) при 0,55. Выберем .

Рисунок 5.3 – зависимость коэффициента от

МГц минимальное значение рабочей частоты.

Исходя из этого, рассчитаем разделительные ёмкости:

Рабочая частота:

Определим входное сопротивление каскада:

– относительная расстройка (6.3)

Заключение

В нашей курсовой работе мы рассчитали умножитель частоты с коэффициентом умножения, равным 3 и с входным сигналом

Полученная схема состоит из двух усилительных каскадов с коэффициентами умножения 25 и 42,6 и полосового фильтра на выходе с добротностью 20.

Проанализировав амплитудно-частотную и фазо-частотную характеристики, я могу сделать вывод, что полученный прибор соответствует заданным условиям проектирования и может быть использован в инженерно-технических целях.


8. Литература

1.Валитов Р.А. - радиопередающие устройства на полупроводниковых приборах.

2. Лейк-Сан-Маркос - Умножитель частоты на фазовращателях.

3. И. Забелин - Журнал "Радио",8 номер, 1999г.

4. Л.Н. Бочаров - Расчет электронных устройств.

5. И.И. Четвертков - справочник резисторов.

6. М.Н. Дьяконов – справочник по электрическим конденсаторам.

7. В.Г. Басов - курсовое проектирование.

8. В.Г. Басов – конспект лекций.

Лекция 1 7 . ПОЛУПРОВОДНИКОВЫЕ УМНОЖИТЕЛИ ЧАСТОТЫ

1 7 .2. Транзисторный умножитель частоты

1 7 . 4 . Контрольные вопросы

17.1. Назначение, принцип действия и основные параметры

Умножители частоты в структурной схеме радиопередатчика (см. рис. 2.1) располагаются перед усилителями мощности ВЧ или СВЧ колебаний, повышая в требуемое число раз частоту сигнала возбудителя. Умножители частоты могут также входить в состав и самого возбудителя или синтезатора частот. Для входного и выходного сигнала умножителя частоты запишем:

(17.1)

где п — коэффициент умножения частоты в целое число раз.

Классификация умножителей частоты возможна по двум основным признакам: принципу действия, или способу реализации функции (17.1), и типу нелинейного элемента. По принципу действия умножители подразделяют на два вида: основанные на синхронизации частоты автогенератора внешним сигналом (см. разд. 10.3), в п раз меньшим по частоте (рис. 17.1,а), и с применением нелинейного элемента, искажающего входной синусоидальный сигнал, и выделением из полученного многочастотного спектра требуемой гармоники (рис. 17.1, б ).

Рис. 17.1. Умножители частоты.

По типу используемого нелинейного элемента умножители частоты второго вида подразделяют на транзисторные и диодные.

Основными параметрами умножителя частоты являются: коэффициент умножения по частоте n ; выходная мощность n -й гармоники Р n , входная мощность 1-й гармоники Р 1 , коэффициент преобразования К пр = Р n / Р 1 ; коэффициент полезного действия  = Р n / Р 0 (в случае транзисторного умножителя), уровень подавления побочных составляющих.

Недостаток умножителей частоты (рис. 17.1, а ) первого вида состоит в сужении полосы синхронизма с увеличением номера гармоники п. У умножителей частоты второго вида уменьшается коэффициент преобразования К пр с повышением п. Поэтому обычно ограничиваются значением n = 2 или 3 и при необходимости включают последовательно несколько умножителей частоты, чередуя их с усилителями.

17.2. Транзисторный умножитель частоты

Схема транзисторного умножителя частоты (рис. 17.2) и методика его расчета практически ничем не отличаются от усилителя.

Необходимо только выходную цепь генератора настроить на n -ю гармонику и выбрать значение угла отсечки  =120  / n , соответствующее максимальному значению коэффициента  n ( ). При расчете выходной цепи коэффициент разложения косинусоидального импульса по 1-й гармонике  1 ( ) следует заменить на коэффициент по n -й гармонике  n ( ). Контур в выходной цепи, настроенный в резонанс с n -и гармоникой сигнала, должен обладать удовлетворительными фильтрующими свойствами.

Рис. 17.2. Схема транзисторного умножителя частоты.

Коэффициент умножения схемы на рис. 17.2 обычно не превышает 3–4 раз при КПД, равном 10–20%.

17.3. Диодные умножители частоты

Работа диодных умножителей частоты основана на использовании эффекта нелинейной емкости. В качестве последней используется барьерная емкость обратно смещенного р - n -перехода. Полупроводниковые диоды, специально разработанные для умножения частоты, называются варакторами. При  =0,5 и  0 =0,5 В для нелинейной емкости варактора получим:

, (17.2)

где и - обратное напряжение, приложенное к p - n -переходу.

График нелинейной функции (17.2) показан на рис. 17.3.

Рис. 17.3. График нелинейной функции (17.2).

Заряд, накапливаемый нелинейной емкостью, с напряжением и током связаны зависимостями:

, (17.3)

Две основные схемы диодных умножителей частоты с варакторами приведены на рис. 17.4.

Рис. 17.4. Диодные умножители частоты с варакторами.

В схеме диодного умножителя параллельного вида (рис. 17.4, а ) имеются два контура (или фильтра) последовательного типа, настроенные в резонанс соответственно с частотой входного  и выходного n  сигналов. Такие контуры имеют малое сопротивление на резонансной частоте и большое - на всех остальных (рис. 17.5).

Рис. 17.5.Зависимость сопротивления контура от частоты.

Поэтому первый контур, настроенный в резонанс с частотой входного сигнала о, пропускает только 1-ю гармонику тока, а второй контур, настроенный в резонанс с частотой выходного сигнала n  , - только n -ю гармонику. В результате ток, протекающий через варактор, имеет вид:

, (17.4)

Поскольку емкость варактора (17.2) есть нелинейная функция, то согласно (17.3) при токе (17.4) напряжение на варакторе отлично от синусоидальной формы и содержит гармоники.

Одна из этих гармоник, на которую настроен второй контур, проходит в нагрузку.

Таким образом, с помощью нелинейной емкости в устройстве происходит преобразование мощности сигнала с частотой  в сигнал с частотой n  , т.е. умножение частоты.

Аналогичным образом работает вторая схема умножителя частоты последовательного вида (рис. 17.4, б ), в которой имеется два контура (или фильтра) параллельного типа, настроенные в резонанс соответственно с частотой входного  и выходного n  сигналов. Такие контуры имеют большое сопротивление на резонансной частоте и малое - на всех остальных. Поэтому напряжение на первом контуре, настроенном в резонанс с частотой входного сигнала , содержит только 1-ю гармонику, а на втором контуре, настроенном в резонанс с частотой выходного сигнала n  , - только n -ю гармонику. В результате напряжение, приложенное к варактору, имеет вид:

, (17.5)

где U 0 - постоянное напряжение смещения на варакторе.

Поскольку емкость варактора (17.2) есть нелинейная функция, то согласно (17.3) при напряжении (17.5) ток, протекающий через варактор, отличен от синусоидальной формы и содержит гармоники. Одна из этих гармоник, на которую настроен второй контур, проходит в нагрузку. Таким образом, с помощью нелинейной емкости в схеме происходит преобразование мощности сигнала с частотой  в сигнал с частотой n  , т.е. умножение частоты.

Варакторные умножители частоты в ДЦВ диапазоне при n =2 и 3 имеют высокий коэффициент преобразования К пр = P n / P 1 = 0,6…0,7. При больших величинах п в СВЧ диапазоне значение К пр уменьшается до 0,1 и ниже.

17.4. Контрольные вопросы

1. Каким образом осуществляется умножение частоты колебаний?

2. Нарисуйте схему транзисторного умножителя частоты.

3. Поясните, почему с помощью нелинейной емкости можно производить умножение частоты колебаний.

4. Нарисуйте схемы диодного умножителя частоты последовательного и параллельного типа. В чем состоят различия между ними?

умножитель частоты

радиоэлектронное устройство для увеличения в целое число раз частоты подводимых к нему периодических электрических колебаний. Используется преимущественно для повышения частоты стабильных колебаний в радиопередающих, радиолокационных, измерительных и других устройствах.

Умножитель частоты

электронное (реже электромагнитное) устройство, предназначенное для увеличения в целое число раз частоты подводимых к нему периодических электрических колебаний. Отношение fвых/fвх (fвх и fвых √ частоты колебаний соответственно на входе и выходе У. ч.) называется коэффициента умножения частоты m (m ³ 2; может достигать нескольких десятков). Характерная особенность У. ч. √ постоянство т при изменении (в некоторой конечной области) fвх, а также параметров У. ч. (например, резонансных частот колебательных контуров или резонаторов, входящих в состав У. ч.). Отсюда следует, что если fвх по каким-либо причинам получила приращение Dfвх (достаточно малое), то приращение Dfвых частоты fвых таково, что Dfвх/fвх = Dfвых/fвых, т. е. относительная нестабильность частоты колебаний при умножении остаётся неизменной. Это важное свойство У. ч. позволяет использовать их для повышения частоты стабильных колебаний (обычно получаемых от кварцевого задающего генератора) в различных радиопередающих, радиолокационных, измерительных и др. установках.

Наиболее распространены У. ч., состоящие из нелинейного устройства (например, транзистора, варактора, или варикапа, катушки с ферритовым сердечником; электронной лампы) и электрического фильтра (одного или нескольких). Нелинейное устройство изменяет форму входных колебаний, вследствие чего в спектре колебаний на его выходе появляются составляющие с частотами, кратными fвх. Эти сложные колебания поступают на вход фильтра, который выделяет составляющую с заданной частотой mfвх, подавляя (не пропуская) остальные. Поскольку такое подавление в реальных фильтрах не является полным, на выходе У. ч. остаются нежелательные (т. н. побочные) составляющие, т. е. гармоники с номерами, отличными от m. Задача облегчается, если нелинейное устройство порождает практически только m-ю гармонику fвх, √ в этом случае иногда обходятся без фильтра (известны подобные У. ч. на туннельных диодах и специальных электроннолучевых приборах). При m > 5 бывает энергетически выгоднее использовать многокаскадные У. ч. (в них выходные колебания одного каскада служат входными для другого).

Находят применение также У. ч., действие которых основано на синхронизации автогенератора (см. Генерирование электрических колебаний). В последних возбуждаются колебания с частотой f0 = mfвх, которая становится в точности равной mfвх под действием поступающих на его вход колебаний с частотой fвх. Недостаток таких У. ч. √ сравнительно узкая полоса значений fвх, при которых возможна синхронизация. Кроме указанных, некоторое распространение получили радиоимпульсные У. ч., в которых на вход электрического фильтра подаются радиоимпульсы определённой формы, вырабатываемые под действием входных колебаний с частотой fвх.

Основная проблема при создании У. ч. √ уменьшение фазовой нестабильности выходных колебаний (обусловленной случайным характером изменения их фазы), приводящей к увеличению относительной нестабильности частоты на выходе по сравнению с соответствующей величиной на входе. Строгий расчёт У. ч. связан с интегрированием нелинейных дифференциальных уравнений.

Лит.: Жаботинский М. Е., Свердлов Ю. Л., Основы теории и техники умножения частоты, М., 1964; Ризкин И. Х., Умножители и делители частоты, М., 1966; Бруевич А. Н., Умножители частоты, М., 1970; Радиопередающие устройства на полупроводниковых приборах, М., 1973.

И. Х. Ризкин.

Википедия

Умножитель частоты

Умножитель частоты - электрическое или электронное устройство, в котором при подаче на вход колебаний с периодом 2 ⋅ π /ω на выходе формируются колебания с периодом 2 ⋅ π /N  ⋅ ω .

Умножители применяются для:

  1. Переноса кварцованных частот (СВЧ-диапазон;
  2. Синтезирования сетки частот;
  3. Измерения стабильности частоты.

В радиопередающих устройствах, применяя умножители, удаётся:

  1. Понизить частоту задающего генератора, что повышает стабильность;
  2. Расширить диапазон перестройки радиопередающего устройства при меньшем диапазоне перестройки задающего генератора;
  3. Повысить устойчивость работы радиопередающего устройства за счёт ослабления обратной связи, так как в умножителе частоты входные и выходные цепи настроены на разные частоты;
  4. Увеличить абсолютную девиацию частоты или фазы при частотной или фазовой модуляции.
Понравилась статья? Поделитесь ей
Наверх